Chapter 1

Basics of Geometry

Section 3

Segments and Their Measures

GOAL 1: Using Segment Postulates

In geometry, rules that are accepted without proof are called
__postulates_ or _axioms_. Rules that are proved are called \qquad theorems \qquad .

POSTULATE 1: Ruler Postulate

The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the \qquad coordinate \qquad of the point.

The __distance__ between points A and B, written as $A B$, is the absolute value of the difference between the coordinates of A and B.

$$
A B=\left|x_{2}-x_{1}\right|
$$

$A B$ is also called the _length__ of $A B$.

Example 1: Finding the Distance Between Two Points

Measure the length of the segment to the nearest millimeter.

When three points lie on a line, you can say that one of them is _between_ the other two. This concept applies to collinear points only. For instance, in the figures below, point _B_ is between points _A_ and _C_, but point _E_ is not between points _D_and _F..

POSTULATE 2: Segment Addition Postulate

If B is between A and C, then _AB_+_BC_ = $A C_{-}$.

If $A B_{-}+{ }_{-} B C_{-}={ }_{-} A C_{-}$, then B is between A and C.

Example 2: Finding Distance on a Map

Use the map to find the distances between the three cities that lie on a line.

$$
\begin{aligned}
& A M+M B=A B \leftarrow \text { Segment Addition Postulate } \\
& 80+90=170 \\
& \quad 170 \text { miles }
\end{aligned}
$$

GOAL 2: Using the Distance Formula

The Distance Formula is used for computing the distance between two points in a coordinate plane.

If $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are points in a coordinate plane, then the distance between A and B is

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example 3: Using the Distance Formula

Find the lengths of the segments. Tell whether any of the segments have the same length.

AB $(-1,1)(-4,3)$
$\begin{aligned} & \sqrt{(-1++4)^{2}+(1-3)^{2}} \\ & \sqrt{3^{2}+(-2)^{2}} \rightarrow \sqrt{9+4} \rightarrow \sqrt{13}\end{aligned}$
AC $(-1,1)(3,2)$
$\sqrt{(-1-3)^{2}+(1-2)^{2}}$

$$
\sqrt{(-4)^{2}+(-1)^{2}} \rightarrow \sqrt{16+1} \rightarrow \sqrt{17}
$$

AD $(-1,1)(2,-1)$
$\sqrt{(-3)^{2}+(2)^{2}} \rightarrow \sqrt{9+4} \rightarrow \sqrt{13}$

Segments that have the same length are called \qquad congruent segments \qquad .

There is a special symbol, \cong, for indicating congruence.

IMPORTANT NOTE:

Lengths are equal.

$$
A B=A D
$$

Segments are congruent.

$$
\overline{A B} \cong \overline{A D}
$$

The Distance Formula is based on the Pythagorean Theorem, which we will see again when we work with right triangles in Chapter 9.

Distance Formula

$$
(\boldsymbol{A B})^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
$$

Pythagorean Theorem

$$
c^{2}=a^{2}+b^{2}
$$

Example 4: Finding Distances on a City Map

On the map, the city blocks are 340 feet apart east-west and 480 feet apart north-south.
a. Find the walking distance between A and B.

$$
1700+1440=3140 \text { feet }
$$

a. What would the distance be if a diagonal street existed between the two points?

$$
\begin{aligned}
& \sqrt{(1020--680)^{2}+(960--480)^{2}} \\
& \sqrt{1700^{2}+1440^{2}} \\
& \sqrt{4963600} \Rightarrow \approx 2228 \mathrm{ft}
\end{aligned}
$$

